A NOTE ON
THE RECOGNITION OF CODISMANTLABLE GRAPHS AND POSETS

TURKER BIYIKOGLU AND YUSUF CIVAN

ABSTRACT. We show that when a graph G is codismantlable, then the codismantling
order does not matter from which we conclude an O(|V|?/log|V|) running time algo-
rithm for checking codismantlability by using Spinrad’s data structure. In addition, we
introduce codismantlable posets, and prove that codsimantlability of posets is equivalent
to that of their comparability graphs.

1. INTRODUCTION

By a graph G = (V, E), we mean an undirected finite graph without loops or multiple
edges. When z and y are two distinct vertices of a graph G, if Ng[x] € Ng[y], then the
vertex x is said to be a dominated vertex, whereas the vertex y is called a codominated
vertex of G, where Ng(2) :={ue V:uz e E} and Ng|z] = Ng(z) u {z} are the open and
closed neighbourhood sets of the vertex z in G.

There are two graph classes, dismantlable and codismantlable graphs, both of which
can be defined by the existence of particular (full/partial) vertex elimination schemes
built on removing recursively dominated and codominated vertices respectively.

In detail, a graph G is called a dismantlable (or cop-win) graph [4] (see also [2] for a
recent detailed book on cop-win graphs), if either G has a single vertex or else there exists
a dominated vertex x in G for which G — x is dismantlable. It means that when G is
dismantlable, there exists an ordering of all of its vertices vy, vs, ..., v, such that v;,; is
a dominated vertex in G; := G — {vy, vq, ..., v;} for each 0 < ¢ < n, where Gy := G. Such
an ordering of vertices of G is said to be a dismantling ordering.

In order to characterize a subclass of vertex decomposable graphs, we introduce the
notion of codismantlable graphs in [1]. We call a graph G codismantlable if either it is an
edgeless graph or else it has a codominated vertex y such that G — y is codismantlable.
It means that there is an ordered list {uy,...,ux} < V of vertices such that u;; is a
codominated vertex in G; := G — {uy,...,u;} for each 0 < j < k, where Gy := G, and
the graph Gyy1 := G — {uy, ..., ux} is an edgeless graph. Such a set {uy, ..., u;} is called
a codismantling order (or shortly a cd-order) for G.

Remark 1.1. We note that there is no direct relation between the classes of codisman-
tlable and dismantlable graphs, so our terminology is just a coincidence stemming from
the relevance of their defining relations. Moreover, they are not complementary graph
classes, that is, the complement of a codismantlable graph need not be a dismantlable
graph and vice versa.
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Example 1.2. The wheel graph W, for n > 4 is an example of a dismantlable graph
that is not codismantlable, and the pan graph Pan,, for m > 4 is a codismantlable
graph which is not dismantlable (see Figure 1 for n = m = 5). Moreover, while W},
is a dismantlable graph, its complement W, is not codismantlable for any n > 5, and
similarly, the complement Pan,, is not dismantlable for any m > 5.

FIGURE 1. The wheel W5 and the pan Pans graphs.

The notion of dismantlability for partially ordered sets (posets for short) firstly intro-
duced by Rival [5] in which he proves that any dismantlable poset has the fixed point
property. In analogy with dismantlable posets, we introduce codismantlable posets, and
show that codismantlability of posets is equivalent to that their comparability graphs.

2. RECOGNATION OF CODISMANTLABLE GRAPHS

Definition 2.1. We call a pair {z,y} of distinct vertices of a graph G a true-twin, if
N¢[x] = Ngly] and there exists no vertex z € V\{x, y} satisfying Ng[z] & Ng[z] = Ng|y].

Lemma 2.2. If x and y are distinct codominated vertices of G such that y is not codom-
inated in G — x, then {x,y} is a true-twin of G.

Proof. Since y is codominated in G while it is not codominated in G — x, we must have
Nglz] € Nely]. On the other hand, since z is codominated in G, there is a vertex
z € V\{z} such that Ng[z] € Ng[z]. However, it then follows that z = y, since otherwise
the vertex y would be codominated in G — x. U

Lemma 2.3. If {z,y} is a true-twin of G, then G is codismantlable if and only if G — x
1s codismantlable.

Proof. Since the sufficiency is clear, we only prove the necessary part. So, suppose that
G is codismantlable, while the graph G — x is not. Observe that any cd-order must
contain at least one of the vertices z and y, since xy € E. Furthermore, since {x,y} is
a true-twin of (G, we may assume that any such set contains the vertex z. Among any
such cd-orders, we choose one, say C' := {vy,vs,..., v}, in which the appearance of the
vertex x has the lowest possible index, and let x = v;. Note that ¢ > 1, since G — z is not
codismantlable. If we define H := G — {vy,...,v;_5}, observe that x is codominated in
H, since Ng[x] = Ng|y|, while the vertex v;_; is not codominated in H — x. Indeed, if
v;—1 was codominated in H —z, then C" := {vy,vs, ..., 09,2, 0;_1, Vi11, .. . g} would be a
cd-order for GG in which the appearance of x comes before than that in C, a contradiction.
However, it then follows that {x,v;_1} is a true-twin of H by Lemma 2.2, which in turn
forces that {y,v;_1} is a true-twin of H — x, contradicting to the fact that v;_; is not
codominated in H — x. 0
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Theorem 2.4. Let x be a codominated vertex of G. Then G is codismantlable if and only
if G — x is codismantlable.

Proof. Once again we only need to verify the necessary condition of the claim. So, suppose
that G is codismantlable, while the graph G — z is not. Moreover, by Lemma 2.3, we may
further assume that there exists no vertex y € Ng(x) such that {z,y} is a true-twin of G.

Case 1. There exists at least one cd-order of G containing the vertex x. In this case,
as above, we choose a cd-order, C' := {vy,vy,...,v;} of G in which the appearance of the
vertex x has the lowest possible index among any such order. We let * = v; and note
that ¢ > 1. Since x is codominated in G, so is in H := G — {vy,...,v;_2}. On the other
hand, the vertex v;_; is not codominated in H — x because of the chosen cd-order C'. By
Lemma 2.2, the pair {z,v;_1} is a true-twin of H, a contradiction.

Case 2. There exists no cd-order of G containing z. Now, let D := {u1,...,u;} be any
cd-order for G. Since G — D is an edgeless graph, we must have Ng(z) € D. On the other
hand, since x is codominated in G, there exists w € Ng(x) such that Ng[w] € Ng|z].
Suppose that u; € Ng(x) n D is the vertex such that Ng[u;] € Ng[x] and j is the greatest
index with this property. We define T' := G — {uy,...,u;_1}, and note that there exists
a vertex z € T satisfying Nr[z] € Nr[u,], since u; is codominated in 7. However, this
forces z = x by the choice of the vertex u;, that is, {z,u;} is a true-twin of 7. We may
then interchange the vertices  and u; in D by Lemma 2.3 to create a new cd-order for
G containing x, a contradiction. U

The counterpart of Theorem 2.4 for dismantlable graphs directly follows from the facts
that the induced subgraph G — z is a retract of G whenever x is a dismantlable vertex,
and if G is dismantlable, then so is any retract of it (see [2] for details).

Theorem 2.4 naturally produces a greedy algorithm for recognizing codismantlability.
For this, we need to check whether G has a codominated vertex or not that consumes
23 er dege () degg(y) operations. Since we repeat this at most [V] times, the total

running time is in O(|V||E|A(G)?), where A(G) is the maximum degree of G.

Corollary 2.5. We can recognize for a given graph G of maximum degree A, whether it
is codismantlable or not in O(|V||E|A?) time by using the greedy algorithm.

We recall that Spinrad [6] has introduced a new strategy on the recognition of quasi-
triangulated graphs, which is also applicable to dismantlable graphs. His main algo-
rithm is based on constructing lists of pairs with small deficit sets, where deficit(u,v) :=
|Ne(u)\Ng(v)| for any pair {u,v} of vertices of G. In his language, the existence of a
dominated vertex in each phase corresponds to having some edge with deficit at least one
from which he obtains an algorithm to recognize dismantlable graphs in O(|V'[3/1og |V]).
Together with Theorem 2.4, his approach yields an algorithm for codismantlable graphs
having the same running time.

Corollary 2.6. We can recognize for a given graph G, whether it is codismantlable or
not in O(|V'|*/log |V]) time by using the Spinrad’s data structure.
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3. CODISMANTLABLE POSETS

In this section, we show that the codismantlability of posets can be characterized form
that of their comparability graphs.

Let (P, <) be a (finite) partially ordered set (poset for short). For elements z,y € P,
we say that y covers x in P, denoted by x < y, if z < y and there exists no elements
z € P\{z,y} satisfying z < z < y. In such a case, z is called a lower cover of y, and y
is called an upper cover of x in P. An element x € P is said to be irreducible if it has a
unique upper or lower cover in P. Dually, we call an element y € P as coirreducible if it
is the unique upper or lower cover of an irreducible element in P.

We recall that a poset P is said to be dismantlable if its elements can be ordered
T1,Z2,...,%,, where |P| = n, such that z; is an irreducible elements of the poset P —
{z;:i<j}foreachl1 <j<n-—1

In an analogy with dismantlable posets, we next introduce the class of codismantlable
posets.

Definition 3.1. We call a poset P codismantlable, if there exists a sequence C :=
{c1,¢9, ..., cx} of elements of P such that ¢; is coirreducible in P;,_y := P—{cy,ca,...,¢i—1}
for any 1 < ¢ < k, where Py := P, and P, := P — (' is an anti-chain.

We recall that for a poset (P, <), the comparability graph Comp(P) of P is the (undi-
rected) graph whose vertices are the elements of P and edges are those pairs {z,y} of
elements such that r < y in P.

Theorem 3.2. Let P be a poset. Then P is a codismantlable poset if and only if Comp(P)
1 a codismantlable graph.

Proof. In view of Theorem 2.4, the claim follows at once if we verify that an element x of
P is coirreducible if and only if it is a codominated vertex of Comp(P).

Assume first that x is coirreducible in P. So, there is an irreducible element, say z € P,
such that x is the unique upper or lower cover of z in P. In either case, observe that
every element of P which is comparable to z must be comparable to x. It means that
Ncomp(p)[2] © Ncomp(p)[2]; hence, x is codominated in Comp(P).

Conversely, suppose that = is a codominated vertex of Comp(P). Thus there exists a
vertex y € P\{z} satisfying Neomp(p)[¥] S Ncomp(p)[2]. Since x and y are comparable
and distinct, we may assume that y < z in P (the case x < y can be treated similarly).
Note that the element y need not be irreducible in P. On the contrary, we claim that x
is coirreducible. Consider a maximal (saturated) chain M @y < 21 < 23 < ... < z <
within the interval [y, z] for some k > 0. Since M is maximal, x is an upper cover of zj
in P. If u is another upper cover of z, we then have y < u, that is, u € Neomp(p)[y] <
Ncomp(P) [z]. However, if 2 < u, then u can not cover z; in P, and if u < x, then M can
not be maximal. Therefore we must have u = x. It follows that z is the unique upper
cover of z; implying that z is coirreducible in P as claimed. O

We remark that there is a similar characterization of dismantlable posets. Ginsburg [3]
(compare to Corollary 2.5 of [3]) shows that a poset P is dismantlable if and only if
its comparability graph Comp(P) is dismantlable, while the strategy of our proof does
not work in the dismantlable case, since a dominated vertex of Comp(P) need not be
necessarily an irreducible element of P.
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Note also that one of the consequence of Theorem 3.2 is that in the language of posets,
the dismantlability and codismantlability are not related. For instance, the 2n-wheel W5,
and the 2n-pan Pans, for any n > 3 are comparability graphs such that the corresponding
poset of Wy, is dismantlable, while it is not codismantlable, and the poset of Pany, is
codismantlable, while it is not dismantlable.

While Theorem 3.2 provides a characterization of codismantlability of posets in terms
of those of comparability graphs, in the case of dismantlability, Ginsburg [3] finds a way to
characterize the dismantlability of graphs in terms of those of associated posets, namely
the face posets of clique complexes CI(G) of graphs. We recall that for any simplicial
complex A, its face poset P(A) is the poset on the faces of A ordered with respect
to the inclusion. Ginsburg [3] shows that dismantlablity of a graph G is equivalent to
that of P(Cl(G)), where P(Cl(G)) is obtained from P(CI(G)) by removing the empty
clique of G (see Theorem 2.4 of [3]). However, such a characterization does not valid
for codismantlability of G in terms of P(Cl(G)) or even P(Ind(G)), where Ind(G) is the
independence complex of G. For instance, the graph Pany is codismantlable, while none
of P(Cl(Pany)) and P(Ind(Pany)) is. In this guise, we leave it open the question of finding
(if possible) a poset P(G) for any graph G such that codismantlabilities of G and P(G)
are equivalent.
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